Possible Global Generation Region of Nonlinear Whistler-Mode Chorus Emission Waves at Mercury
Corresponding Author
Mitsunori Ozaki
Graduate School of Natural Science & Engineering, Kanazawa University, Kanazawa, Japan
Correspondence to:
M. Ozaki,
Search for more papers by this authorTakeru Kondo
Graduate School of Natural Science & Engineering, Kanazawa University, Kanazawa, Japan
Search for more papers by this authorSatoshi Yagitani
Graduate School of Natural Science & Engineering, Kanazawa University, Kanazawa, Japan
Search for more papers by this authorYoshiharu Omura
Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Japan
Search for more papers by this authorCorresponding Author
Mitsunori Ozaki
Graduate School of Natural Science & Engineering, Kanazawa University, Kanazawa, Japan
Correspondence to:
M. Ozaki,
Search for more papers by this authorTakeru Kondo
Graduate School of Natural Science & Engineering, Kanazawa University, Kanazawa, Japan
Search for more papers by this authorSatoshi Yagitani
Graduate School of Natural Science & Engineering, Kanazawa University, Kanazawa, Japan
Search for more papers by this authorYoshiharu Omura
Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Japan
Search for more papers by this authorAbstract
Chorus waves are a kind of intense electromagnetic emission wave in magnetized planets and can play important roles in the kinetic electron dynamics in planetary magnetospheres. Rapid changes of the ring electron current belt in Mercury’s magnetosphere and the contribution of chorus waves have remained long-standing scientific issues from the first Mercury flyby observations by Mariner 10 in 1970s because of the small size of the magnetosphere. Based on theoretical analyses and simulations successfully reconstructing Earth’s chorus wave properties, we report on possible generation regions of chorus waves in Mercury’s magnetosphere. The theoretical analysis for low-temperature-anisotropy electrons shows a clear asymmetric day–night spatial distribution of the possible chorus generation region because of the difference in the nonlinear convective wave growth along the magnetic field lines. Simulation results show a rapid enhancement of the ring electron current belt by resonant interactions with repetitive chorus waves. Our study suggests that energetic electrons in Mercury’s magnetosphere can be enhanced locally by nonlinear chorus wave–particle interactions.
Key Points
-
Possible global distribution of chorus waves at Mercury was estimated based on a nonlinear wave growth theory
-
Nonlinear chorus waves at Mercury can show a clear day–night asymmetric distribution due to differences in convective growth
-
Energetic electrons can evolve to a pancake-like pitch angle distribution in Mercury’s ring electron current belt by chorus waves
Open Research
Data Availability Statement
The KT17 magnetic field model is available from https://github.com/mattkjames7/KT17. The electron number density is given by Equations 6 and 7. The wave growth characteristics in Figures 2 and 3 are available from Equations 1-5. The simulation data in Figures 4 and 5 are obtained from the KEMPO1 code (http://space.rish.kyoto-u.ac.jp/software/) based on previous literature by Hikishima et al. (2009).
Supporting Information
Filename | Description |
---|---|
2023JA032086-sup-0001-Supporting Information SI-S01.docx27.3 KB | Supporting Information S1 |
2023JA032086-sup-0002-Movie SI-S01.mp4469.6 KB | Movie S1 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- Anderson, B. J., Johnson, C. L., & Korth, H. (2013). A magnetic disturbance index for Mercury’s magnetic field derived from MESSENGER Magnetometer data. Geochemistry, Geophysics, Geosystems, 14(9), 3875–3886. https://doi-org.ezproxyberklee.flo.org/10.1002/ggge.20242
- Anderson, B. J., Johnson, C. L., Korth, H., Purucker, M. E., Winslow, R. M., Slavin, J. A., et al. (2011). The global magnetic field of Mercury from MESSENGER orbital observations. Science, 333(6051), 1859–1862. https://doi-org.ezproxyberklee.flo.org/10.1126/science.1211001
- Angerami, J. J., & Thomas, J. O. (1964). Studies of planetary atmospheres: 1. The distribution of electrons and ions in the Earth’s exosphere. Journal of Geophysical Research, 69(21), 4537–4560. https://doi-org.ezproxyberklee.flo.org/10.1029/JZ069i021p04537
- Baker, D. N. (2021). Wave–particle interaction effects in the Van Allen belts. Earth Planets and Space, 73(1), 189. https://doi-org.ezproxyberklee.flo.org/10.1186/s40623-021-01508-y
- Baker, D. N., Borovsky, J. E., Burns, J. O., Gisler, G. R., & Zeilik, M. (1987). Possible calorimetric effects at Mercury due to solar wind-magnetosphere interactions. Journal of Geophysical Research, 92(A5), 4707–4712. https://doi-org.ezproxyberklee.flo.org/10.1029/JA092iA05p04707
- Baker, D. N., Dewey, R. M., Lawrence, D. J., Goldsten, J. O., Peplowski, P. N., Korth, H., et al. (2016). Intense energetic electron flux enhancements in Mercury’’s magnetosphere: An integrated view with high-resolution observations from MESSENGER. Journal of Geophysical Research: Space Physics, 121(3), 2171–2184. https://doi-org.ezproxyberklee.flo.org/10.1002/2015JA021778
- Burton, R. K., & Holzer, R. E. (1974). The origin and propagation of chorus in the outer magnetosphere. Journal of Geophysical Research, 79(7), 1014–1023. https://doi-org.ezproxyberklee.flo.org/10.1029/JA079i007p01014
- Dewey, R. M., Slavin, J. A., Raines, J. M., Baker, D. N., & Lawrence, D. J. (2017). Energetic electron acceleration and injection during dipolarization events in Mercury’s magnetotail. Journal of Geophysical Research: Space Physics, 122(12), 188. 170–12. https://doi-org.ezproxyberklee.flo.org/10.1002/2017JA024617
10.1002/2017JA024617 Google Scholar
- Ebihara, Y., Ikeda, T., Omura, Y., Tanaka, T., & Fok, M.-C. (2020). Nonlinear wave growth analysis of whistler-mode chorus generation regions based on coupled MHD and advection simulation of the inner magnetosphere. Journal of Geophysical Research: Space Physics, 125(1), e2019JA026951. https://doi-org.ezproxyberklee.flo.org/10.1029/2019JA026951
- Fujiwara, Y., Omura, Y., & Nogi, T. (2023). Triggering of whistler-mode rising and falling tone emissions in a homogeneous magnetic field. Journal of Geophysical Research: Space Physics, 128(2), e2022JA030967. https://doi-org.ezproxyberklee.flo.org/10.1029/2022JA030967
- Griton, L., Issautier, K., Moncuquet, M., Pantellini, F., Kasaba, Y., & Kojima, H. (2023). Electron density revealing the boundaries of Mercury’s magnetosphere via serendipitous measurements by SORBET during BepiColombo first and second Mercury swing-bys. A&A, 670, A174. https://doi-org.ezproxyberklee.flo.org/10.1051/0004-6361/202245162
- Hikishima, M., Yagitani, S., Omura, Y., & Nagano, I. (2009). Coherent nonlinear scattering of energetic electrons in the process of whistler mode chorus generation. Journal of Geophysical Research, 114(A10), A10205. https://doi-org.ezproxyberklee.flo.org/10.1029/2009JA014371
10.1029/2009JA014371 Google Scholar
- Ho, G. C., Krimigis, S. M., Gold, R. E., Baker, D. N., Anderson, B. J., Korth, H., et al. (2012). Spatial distribution and spectral characteristics of energetic electrons in Mercury’s magnetosphere. Journal of Geophysical Research, 117(A12), A00M04. https://doi-org.ezproxyberklee.flo.org/10.1029/2012JA017983
10.1029/2012JA017983 Google Scholar
- Ho, G. C., Krimigis, S. M., Gold, R. E., Baker, D. N., Slavin, J. A., Anderson, B. J., et al. (2011). MESSENGER observations of transient bursts of energetic electrons in Mercury’s magnetosphere. Science, 333(6051), 1868. https://doi-org.ezproxyberklee.flo.org/10.1126/science.1211141
- Hospodarsky, G. B., Averkamp, T. F., Kurth, W. S., Gurnett, D. A., Menietti, J. D., Santolik, O., & Dougherty, M. K. (2008). Observations of chorus at Saturn using the Cassini Radio and Plasma Wave Science instrument. Journal of Geophysical Research, 113(A12), A12206. https://doi-org.ezproxyberklee.flo.org/10.1029/2008JA013237
- James, M. K., Imber, S. M., Yeoman, T. K., & Bunce, E. J. (2019). Field line resonance in the Hermean magnetosphere: Structure and implications for plasma distribution. Journal of Geophysical Research: Space Physics, 124(1), 211–228. https://doi-org.ezproxyberklee.flo.org/10.1029/2018JA025920
- Johnson, C. L., Purucker, M. E., Korth, H., Anderson, B. J., Winslow, R. M., Al Asad, M. M. H., et al. (2012). MESSENGER observations of Mercury’s magnetic field structure. Journal of Geophysical Research, 117(E12), E00L14. https://doi-org.ezproxyberklee.flo.org/10.1029/2012JE004217
- Kasaba, Y., Kojima, H., Moncuquet, M., Wahlund, J. E., Yagitani, S., Sahraoui, F., et al. (2020). Plasma Wave Investigation (PWI) aboard BepiColombo Mio on the trip to the first measurement of electric fields, electromagnetic waves, and radio waves around Mercury. Space Science Reviews, 216(4), 65. https://doi-org.ezproxyberklee.flo.org/10.1007/s11214-020-00692-9
- Korth, H., Johnson, C. L., Philpott, L., Tsyganenko, N. A., & Anderson, B. J. (2017). A dynamic model of Mercury’s magnetospheric magnetic field. Geophysical Research Letters, 44(10), 154. 147–10. https://doi-org.ezproxyberklee.flo.org/10.1002/2017GL074699
10.1002/2017GL074699 Google Scholar
- Kurth, W. S., & Gurnett, D. A. (1991). Plasma waves in planetary magnetospheres. Journal of Geophysical Research, 96(S01), 18977–18991. https://doi-org.ezproxyberklee.flo.org/10.1029/91JA01819
- Li, W., Shen, X.-C., Menietti, J. D., Ma, Q., Zhang, X.-J., Kurth, W. S., & Hospodarsky, G. B. (2020). Global distribution of whistler mode waves in Jovian inner magnetosphere. Geophysical Research Letters, 47(15), e2020GL088198. https://doi-org.ezproxyberklee.flo.org/10.1029/2020GL088198
- McCollough, J. P., Elkington, S. R., & Baker, D. N. (2012). The role of Shabansky orbits in compression-related electromagnetic ion cyclotron wave growth. Journal of Geophysical Research, 117(A1), A01208. https://doi-org.ezproxyberklee.flo.org/10.1029/2011JA016948
- Menietti, J. D., Schippers, P., Katoh, Y., Leisner, J. S., Hospodarsky, G. B., Gurnett, D. A., & Santolik, O. (2013). Saturn chorus intensity variations. Journal of Geophysical Research: Space Physics, 118(9), 5592–5602. https://doi-org.ezproxyberklee.flo.org/10.1002/jgra.50529
- Meredith, N. P., Horne, R. B., Sicard-Piet, A., Boscher, D., Yearby, K. H., Li, W., & Thorne, R. M. (2012). Global model of lower band and upper band chorus from multiple satellite observations. Journal of Geophysical Research, 117(A10), A10225. https://doi-org.ezproxyberklee.flo.org/10.1029/2012JA017978
- Milillo, A., Fujimoto, M., Murakami, G., Benkhoff, J., Zender, J., Aizawa, S., et al. (2020). Investigating Mercury’s environment with the two-spacecraft BepiColombo mission. Space Science Reviews, 216(5), 93. https://doi-org.ezproxyberklee.flo.org/10.1007/s11214-020-00712-8
- Murakami, G., Hayakawa, H., Ogawa, H., Matsuda, S., Seki, T., Kasaba, Y., et al. (2020). Mio—First comprehensive exploration of Mercury’s space environment: Mission overview. Space Science Reviews, 216(7), 113. https://doi-org.ezproxyberklee.flo.org/10.1007/s11214-020-00733-3
- Ness, N. F., Behannon, K. W., Lepping, R. P., Whang, Y. C., & Schatten, K. H. (1974). Magnetic field observations near Mercury: Preliminary results from Mariner 10. Science, 185(4146), 151–160. https://doi-org.ezproxyberklee.flo.org/10.1126/science.185.4146.151
- Nikoukar, R., Lawrence, D. J., Peplowski, P. N., Dewey, R. M., Korth, H., Baker, D. N., & McNutt, R. L. (2018). Statistical study of Mercury’s energetic electron events as observed by the gamma-ray and neutron spectrometer instrument onboard MESSENGER. Journal of Geophysical Research: Space Physics, 123(6), 4961–4978. https://doi-org.ezproxyberklee.flo.org/10.1029/2018JA025339
- Ogilvie, K. W., Scudder, J. D., Vasyliunas, V. M., Hartle, R. E., & Siscoe, G. L. (1977). Observations at the planet mercury by the plasma electron experiment: Mariner 10. Journal of Geophysical Research, 82(13), 1807–1824. https://doi-org.ezproxyberklee.flo.org/10.1029/JA082i013p01807
- Omura, Y. (2021). Nonlinear wave growth theory of whistler-mode chorus and hiss emissions in the magnetosphere. Earth Planets and Space, 73(1), 95. https://doi-org.ezproxyberklee.flo.org/10.1186/s40623-021-01380-w
- Ozaki, M., Yagitani, S., Kasaba, Y., Kasahara, Y., Matsuda, S., Omura, Y., et al. (2023). Whistler-mode waves in Mercury’s magnetosphere observed by BepiColombo/Mio. Nature Astronomy, 7(11), 1309–1316. https://doi-org.ezproxyberklee.flo.org/10.1038/s41550-023-02055-0
- Ozhogin, P., Song, P., Tu, J., & Reinisch, B. W. (2014). Evaluating the diffusive equilibrium models: Comparison with the IMAGE RPI field-aligned electron density measurements. Journal of Geophysical Research: Space Physics, 119(6), 4400–4411. https://doi-org.ezproxyberklee.flo.org/10.1002/2014JA019982
- Persoon, A. M., Gurnett, D. A., Santolik, O., Kurth, W. S., Faden, J. B., Groene, J. B., et al. (2009). A diffusive equilibrium model for the plasma density in Saturn’s magnetosphere. Journal of Geophysical Research, 114(A4), A04211. https://doi-org.ezproxyberklee.flo.org/10.1029/2008JA013912
- Saito, Y., Delcourt, D., Hirahara, M., Barabash, S., André, N., Takashima, T., et al. (2021). Pre-flight calibration and near-Earth commissioning results of the Mercury Plasma Particle Experiment (MPPE) onboard MMO (Mio). Space Science Reviews, 217(5), 70. https://doi-org.ezproxyberklee.flo.org/10.1007/s11214-021-00839-2
- Santolík, O., Gurnett, D. A., Jones, G. H., Schippers, P., Crary, F. J., Leisner, J. S., et al. (2011). Intense plasma wave emissions associated with Saturn’s moon Rhea. Geophysical Research Letters, 38(19), L19204. https://doi-org.ezproxyberklee.flo.org/10.1029/2011GL049219
- Schriver, D., Trávníček, P. M., Anderson, B. J., Ashour-Abdalla, M., Baker, D. N., Benna, M., et al. (2011). Quasi-trapped ion and electron populations at Mercury. Geophysical Research Letters, 38(23), L23103. https://doi-org.ezproxyberklee.flo.org/10.1029/2011GL049629
- Shprits, Y. Y., Menietti, J. D., Drozdov, A. Y., Horne, R. B., Woodfield, E. E., Groene, J. B., et al. (2018). Strong whistler mode waves observed in the vicinity of Jupiter’s moons. Nature Communications, 9(1), 3131. https://doi-org.ezproxyberklee.flo.org/10.1038/s41467-018-05431-x
- Shprits, Y. Y., Menietti, J. D., Gu, X., Kim, K. C., & Horne, R. B. (2012). Gyroresonant interactions between the radiation belt electrons and whistler mode chorus waves in the radiation environments of Earth, Jupiter, and Saturn: A comparative study. Journal of Geophysical Research, 117(A11), A11216. https://doi-org.ezproxyberklee.flo.org/10.1029/2012JA018031
- Slavin, J. A., Acuña, M. H., Anderson, B. J., Baker, D. N., Benna, M., Boardsen, S. A., et al. (2009). MESSENGER observations of magnetic reconnection in Mercury’s magnetosphere. Science, 324(5927), 606–610. https://doi-org.ezproxyberklee.flo.org/10.1126/science.1172011
- Takeshita, Y., Shiokawa, K., Miyoshi, Y., Ozaki, M., Kasahara, Y., Oyama, S.-i., et al. (2021). Study of spatiotemporal development of global distribution of magnetospheric ELF/VLF waves using ground-based and satellite observations, and RAM-SCB simulations, for the March and November 2017 storms. Journal of Geophysical Research: Space Physics, 126(2), e2020JA028216. https://doi-org.ezproxyberklee.flo.org/10.1029/2020JA028216
- Teng, S., Wu, Y., Harada, Y., Bortnik, J., Zonca, F., Chen, L., & Tao, X. (2023). Whistler-mode chorus waves at Mars. Nature Communications, 14(1), 3142. https://doi-org.ezproxyberklee.flo.org/10.1038/s41467-023-38776-z
- Trávníček, P. M., Hellinger, P., Schriver, D., Herčík, D., Slavin, J. A., & Anderson, B. J. (2009). Kinetic instabilities in Mercury’s magnetosphere: Three-dimensional simulation results. Geophysical Research Letters, 36(7), L07104. https://doi-org.ezproxyberklee.flo.org/10.1029/2008GL036630
- Tsurutani, B. T., & Smith, E. J. (1974). Postmidnight chorus: A substorm phenomenon. Journal of Geophysical Research, 79(1), 118–127. https://doi-org.ezproxyberklee.flo.org/10.1029/ja079i001p00118
- Walsh, B. M., Ryou, A. S., Sibeck, D. G., & Alexeev, I. I. (2013). Energetic particle dynamics in Mercury’s magnetosphere. Journal of Geophysical Research: Space Physics, 118(5), 1992–1999. https://doi-org.ezproxyberklee.flo.org/10.1002/jgra.50266
- Woodfield, E. E., Glauert, S. A., Menietti, J. D., Averkamp, T. F., Horne, R. B., & Shprits, Y. Y. (2019). Rapid electron acceleration in low-density regions of Saturn’s radiation belt by whistler mode chorus waves. Geophysical Research Letters, 46(13), 7191–7198. https://doi-org.ezproxyberklee.flo.org/10.1029/2019GL083071
- Wu, Y., Tao, X., Zonca, F., Chen, L., & Wang, S. (2020). Controlling the chirping of chorus waves via magnetic field inhomogeneity. Geophysical Research Letters, 47(10), e2020GL087791. https://doi-org.ezproxyberklee.flo.org/10.1029/2020GL087791
- Xiao, F., Thorne, R. M., & Summers, D. (1998). Instability of electromagnetic R-mode waves in a relativistic plasma. Physics of Plasmas, 5(7), 2489–2497. https://doi-org.ezproxyberklee.flo.org/10.1063/1.872932
- Yagitani, S., Habagishi, T., & Omura, Y. (2014). Geotail observation of upper band and lower band chorus elements in the outer magnetosphere. Journal of Geophysical Research: Space Physics, 119(6), 4694–4705. https://doi-org.ezproxyberklee.flo.org/10.1002/2013JA019678
- Yagitani, S., Ozaki, M., Sahraoui, F., Mirioni, L., Mansour, M., Chanteur, G., et al. (2020). Measurements of magnetic field fluctuations for plasma wave investigation by the search coil magnetometers (SCM) onboard bepicolombo Mio (Mercury Magnetospheric Orbiter). Space Science Reviews, 216(7), 111. https://doi-org.ezproxyberklee.flo.org/10.1007/s11214-020-00734-2
- Zurbuchen, T. H., Raines, J. M., Gloeckler, G., Krimigis, S. M., Slavin, J. A., Koehn, P. L., et al. (2008). MESSENGER observations of the composition of Mercury’s ionized exosphere and plasma environment. Science, 321(5885), 90–92. https://doi-org.ezproxyberklee.flo.org/10.1126/science.1159314